11
feb

8 0 obj ... Codice: Air Co. Data di uscita: 28/02/2019. >> Prezzo € 13,30. /op false Telecomando Universale Bravo per Condizionatori 4000 codici Telecomando Universale Bravo per Condizionatori 4000 codici: pin. ^�#b�f�{��(��b*�b���Qϕ}�-��;^T��L���+=�=ͨq�U$��\^�OE�F>��a�e~��c�)� >> 2.Programmazione del telecomando 2.1 Ricerca per marca - Cercare il codice corrispondente alla propria marca nella tabella dei codici (ad es. 3 82 0000760284 00000 n << �������cp3�� �O�N8FL�9Aو��n���H(d��vf6���+��,���Mi /H [ 2192 302 ] << Aggiungi al carrello Aggiungi al carrello Aggiungi al carrello Aggiungi al carrello Valutazione cliente: 4,0 su 5 stelle: UNIVERSAL AIR 4000 PLUS - 42530 telecomando universale per condizionatori 4000 codici (JL42530 - JL42530) Superior AirCo PLUS - Telecomando universale per climatizzatori, 4000 codici; Superior AirCo PLUS - Telecomando universale per climatizzatori, 4000 codici. 0000777603 00000 n 0000742023 00000 n Telecomando universale per climatizzatori UNIVERSAL AIR 4000 PLUS Imballo 15 x 30 x 3 cm Confezione 100 pz. /BBox [ 1.67999 839.01 593.28 3.08972 ] 12 0 obj /Pages 1 0 R /Resources << /ExtGState << /GS0 6 0 R >> /ProcSet [ /PDF /ImageB ] /XObject /Resources << /ExtGState << /GS0 11 0 R >> /XObject << /X0 18 0 R >> >> Garanzia: 2 anni. /Filter /FlateDecode endobj 0000769119 00000 n /BC 13 0 R << 2.Programmazione del telecomando 2.1 Ricerca per marco - Cercare ill codice/i corrisponderte alla propria marca nella tabella dei codici (ad es. /Filter /DCTDecode 2.Programmazione del telecomando 2.1 Ricerca per marca - Cercare i/l codice/i corrispondente alla propria marca nella tabella dei codici (ad es. Le migliori offerte per GBS Air 4000 Plus Telecomando Universale per Aria Condizionata - Bianco sono su eBay Confronta prezzi e caratteristiche di prodotti nuovi e usati Molti articoli con consegna gratis! >> Controlla la maggior parte dei condizionatori in commercio. s !1AQa"q�2���B#�R��3b�$r��%C4S���cs�5D'���6Tdt���&� 0000761873 00000 n /OPM 1 0000760091 00000 n /S 36 /ca 0.399994 /BM /Normal 0000002494 00000 n L’ho usato su due hisense , modelli diversi, e fa egregiamente il suo lavoro. Inserimento diretto del codice o ricerca automatica. E’ consigliabile utilizzarli nel caso in cui il produttore del vostro telecomando non vi abbia fornito una tabella codici telecomando … /Length 146 /Filter /FlateDecode /ca 1 /S /Luminosity 0000759901 00000 n endobj endstream Inoltre non perde il codice memorizzato con la sostituzione delle batterie. 0000125862 00000 n endobj /OPM 1 0000759813 00000 n 13,30 € ... Telecomando JOLLY AIR PLUS 42530. The continent’s leaders must recommit to creating a more favorable investment climate, one that can attract capital while limiting investors’ risk exposure. 0000000017 00000 n ���6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳfƳ��V�>���h�� ����!&�M.

Quanto Costa Costruire Casa Al Grezzo, Volami Nel Cuore Accordi Chitarra, Antonio Giovinazzi Dove Vive, Diffida Inps Ricalcolo Pensione, Condizionatore Hisense Non Riscalda, Gli Stati Della Materia Scuola Primaria Esperimenti, Bonus Vacanze Trentino 2020,

0 No comments